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Abstract The approach to requirements specification for embedded systems

described in this paper is called "operational" because a requirements

specification is an executable model of the proposed system interacting with

its environment. The approach is embodied by the language PAISLey, which is

motivated and defined herein. Embedded systems are characterized by

asynchronous parallelism, even at the requirements level; PAISLey

specifications are constructed of interacting processes so that this can be

represented directly. Embedded systems are also characterized by urgent

performance requirements, and PAISLey offers a formal, but intuitive,

0-w treatment of performance.
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* AN OPERATIONAL APPROACH

TO REQUIREMENTS SPECIFICATION

FOR EMBEDDED SYSTEMS

0. INTRODUCTION

Recently the study of system requirements has emerged as a major area of

research in software engineering. It has become clear that the stated

requirements for a system have tremendous impact on the quality and usefulness

of the ultimate product, and on the efficiency and manageability of its

development. Yet, despite their leverage, relatively little is known about

deriving and specifying good sets of requirements.

At the same time, the prominence of "embedded" (roughly equivalent to

"real-time") systems has been increasing, due largely to hardware advances

which have made them feasible for a broader category of applications than ever

before. We will argue that embedded systems are characterized by the urgency

of their performance requirements; to the extent that all computer systems

would benefit from the ability to state and satisfy precise performance

requirements, knowledge of embedded systems can be useful to developers of all

types of system.

This paper presents a new approach to the problem of specifying the

requirements for embedded systems. It offers a substantial increase in

formality, expressive power, and potential for automation over the current

widely known requirements technologies.
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1. THE REQUIREMENTS PROBLEM

1.1. The role of requirements in the system life cycle

The development of a computer system begins with the perception of a need

for it. During the requirements phase, analysts should arrive at a deep

understanding of that need and propose a system to fill it. The product of

the requirements phase is. the requirements specification, which plays a unique

and crucial role in the rest of development. It states what system is to be

developed, at what costs, and under what constraints.

The project cannot be a complete success unless the requirements have the

informed consent of everyone who will be involved, including members of the

development organization (designers, programmers, and managers), the

originating organization (managers or salespeople who determine the cost and

value of the system), and the ultimate users of the system. This consensus

can only be achieved through feedback and negotiation, with preliminary

versions of the requirements specification being the major vehicle of

communication.

During design and implementation, the requirements specification defines

the "top" for top-down design, and the product toward which management effort

is aimed. At the end of development, it is the standard against which the

system is compared for success or failure, acceptance or rejection.

Requirements are often neglected, for reasons that are all too familiar:

lack of awareness of their importance (which is disappearing), lack of useful

requirements analysis and specification techniques, and natural reluctance to

incur costs and delays at the beginning of a project. Yet the consequences of

this shortsightedness, which include cancelled projects or unprofitable

products, unhappy users, chaotically structured systems, budget and schedule
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overruns as endless changes are made, and even lawsuits, are so serious that

no one involved in software engineering can afford to ignore them. Other

introductions to the role of requirements in system development can be found

in [Boehm 76], [Bell & Thayer 76], [Ross & Schoman 77], (Yeh et al. 80],

(Heninger 79], (Balzer & Goldman 79], and [Davis & Rauscher 79].

It should be noted that even with the most optimistic view of current

progress or. requirements analysis and specification, in which problems of

communication and complexity can be solved, certain other problems will remain

very difficult to deal with. One is that vital decisions must be based on

forecasts of costs and even feasibility, while such forecasting is perhaps the

weakest point of our software technology. Another is that the requirements

are constantly changing, even as we try to write them down. And systems that

are used evolve continually throughout their lifetimes ([Belady & Lehman 791,

(Lehman 801), creating "maintenance" costs which may eventually dwarf those of

initial development.

As consciousness of the economic and technical importance of evolution in

the system life cycle grows, we may develop a new concept of the life cycle

based on iterated (re)developments, large and small, as in [Conn 801. In such

a model, the requirements specification will evolve with the system, serving ~I1
throughout its life as definition, documentation, and contract. Needless to

say, this expanded role will place even greater demands on the quality and

modifiability of our requirements specifications.

1.2. Goals for requirements specifications

Progress in software engineering has almost always been made from the

bottom up: from machine language to axiomatic specifications, for example, we

have proceeded first by learning to do something and then by understanding it
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well enough to find suitable abstractions of it. This paper takes the same

approach to requirements. It seems unlikely that we will find really

effective techniques for requirements analysis before we know how to write a

good requirements specification recording the results of that analysis.

Therefore we will concentrate on specification techniques (although useful

results on specification cannot help but suggest analytic methods and

principles).

Goals for requirements specifications have been examined by many of the

cited authors, and are discussed at more length in [Zave 80a]. In short, the

things we do with requirements specifications are: (1) use them as vehicles

for communication, (2) change them, (3) use them to constrain target systems,

and (4) use them to accept or reject final products.

For (1) and (2) they must be understandable and modifiable. Lor (3) they

must be precise, unambiguous, internally consistent, and complete. TheyA
*should also be minimal, i.e. define the smallest set of properties that will

satisfy the users and originators. Otherwise the specification may

over-constrain the target system, so that some of the best solutions to design

problems are unnecessarily excluded. For (4) they should be formally

manipulable (if verification is to be used) or testable (if acceptance testing

is to be used).

The remainder of this paper is concerned with a requirements

specification approach (and language) that promises to help us achieve many of

these goals. It is also somewhat specialized for a particular class of

systems, namely . . . . .

2. EMBEDDED SYSTEMS
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Common examples of embedded systems are industrial process-control

systems, flight-guidance systems, switching systems, patient-monitoring

systems, radar tracking systems, ballistic-missile-defense systems, and

data-acquisition systems for experimental equipment. The class of embedded

systems is an important one, partly because it already includes some of our

oldest and most complex computer applications, and partly because it is

expanding rapidly in volume and variety as a result of the microprocessor

revolution.

2.1. What makes a system "embedded"?

The term "embedded" was popularized by the U.S. Department of Defense in

conjunction with its common language (Ada) development project. "Embedded"

refers to the fact that these systems are embedded in larger systems whose

primary purposes are not computation, but this is actually true of any useful

computer system. A payroll program, for instance, is an essential part of a

business organization, which is a system whose primary purpose is selling

products at a profit.

The common concept that unites the systems we choose to call "embedded"

is process control: providing continual feedback to an unintelligent

environment. This "theme" is easily recognized in flight-guidance systems and

switching systems; even in a patient-monitoring system, sick patients are not

exercising their intelligence in interacting with the system, and nurses can

be viewed as providing a mechanical extension to the system's feedback loop.

The continual demands of an unintelligent environment cause these systems

to have relatively rigid and urgent performance requirements, such as

real-time response requirements and "fail-safe" reliability requirements. It

seems that this emphasis on performance requirements is what really

7.
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characterizes embedded systems, and causes us to be more aware of their roles

in their environments than we are for other types of system.l]

Figure 1 shows an informal classification of systems, based on properties

that show up at the requirements level. Requirements for "support systems"

are generally much less definite than requirements for applications systems.

And while the performance requirements for embedded systems may be couched in

absolutes, the performance requirements for support systems will be relative

to resources and resource utilization, and the performance requirements for

4data-processing systems will be relative to load, resources, and psychological

factors. The most complex systems, such as nationwide airline-reservation

systems, should probably be viewed as having subsystems of all three types.

2.2. The special problems of embedded systems

The special nature of embedded systems exacerbates many software

engineering problems, and thus demands particular attention even during the

requirements phase.

Few organizations have logged as much experience with embedded systems as

the Department of Defense, which spends 56 per cent of its approximately 3

billion dollar annual software budget on them (QFisher 78]). Here is a

pointed summary of that experience:

Embedded computer software often exhibits characteristics that are
strikingly different from those of other computer applications. The
programs are frequently large (50,000 to 100,000 lines of code) and
long-lived (10 to 15 years). Personnel turnover is rapid, typically
two years. Outputs are not just data, but also control signals.
Change is continuous because of evolving system requirements--annual
revisions are often of the same magnitude as the original
development ([Fisher 78]).

Clearly coping with complexity and change will not be easier in the domain of

embedded systems.

,1d
-. . .. .- "-, .-- ,
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In addition to the performance requirements, which have already been

established as a major distinguishing factor, embedded systems are especially

likely to have stringent resource requirements. These are requirements on the

resources, mainly physical in this case, from which the system is constructed.

This is because embedded systems are often installed in places (such as

satellites) where their weight, volume, or power consumption must be limited,

or where temperature, humidity, pressure, and other factors cannot be as

carefully controlled as in the traditional machine room.

The interface between an embedded system and its environment tends to be

complex, asynchronous, highly parallel, and distributed. This is another

direct result of the "process control" concept, because the environment is

likely to consist of a number of objects which interact with the system and

each other in asynchronous parallel. Furthermore, it is probably the

complexity of the environment that necessitates computer support in the first

place (consider an air-traffic-control system)! This characteristic makes the

requirements difficult to specify in a way that is both precise and

comprehensible.

Finally, embedded systems can be extraordinarily hard to test. The

complexity of the system/environment interface is one obstacle, and the fact

that these programs often cannot be tested in their operational environments

is another. It is not feasible to test flight-guidance software by flying

with it, nor to test ballistic-missile-defense software under battle

conditions.

3. AN "OPERATIONAL" APPROACH

The approach taken in this paper is to specify the requirements for an
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embedded system with an explicit model of the proposed system interacting with

an explicit model of the system's environment. Both submodels consist of sets

of asynchronously interacting digital processes, although some of the

processes in the environment model may represent discrete simulations of

nondigital objects such as people or machines. The entire model is

executable, and the internal computations of the processes are specified in an

applicative language.

We call this an "operational" approach because the emphasis on

constructing an operating model of the system functioning in its environment

provides its primary flavor. It has been embodied in a Specification Language

which, since it is based on the ideas above and is therefore Process-oriented,

Applicative, and Interpretable (executable), is named PAISLey.

In the remainder of this section, the basic ideas behind PAISLey will be

explained, illustrated, and justified in detail. Section 4 addresses apparent

disadvantages of an operational approach, and Section 5 defines PAISLey.

3.1. Explicit modeling of the environment

Figure 2 shows a partial requirements model for a simple

patient-monitoring system. The "patient", "nurse", and "doctor" processes are

all digital simulations of these natural objects. They represent, of course,

only the roles played by these people with respect to patient-monitoring. The

"patient" process also models a sensor attached to the patient (this model is

only partial because the complete one would have multiple patients, sensors,

terminals, etc.).

The "reader" process reads sensor data at specified intervals of real

time, sending a warning to the terminal if the reading is so implausible as to

suggest sensor malfunction. The "monitor" process checks the reading against

_ _
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medical safety criteria, sending a warning if it falls outside a safe range.

Sensor data also goes to the "database" process, which responds to queries

from the terminal and also purges old data to maintain itself at a reasonable

size. Many parameters, such as sensor-reading frequencies and safe ranges,

can be set by doctors and nurses.

The boundary between the environment and the proposed system is

determined simply by which parts are "givens" for the contractor and which

parts must be supplied by the contractor. The boundary is arbitrary (from a

technical viewpoint), and is not even part of the formal PAISLey

specification.

Including an explicit model of the environment has several advantages for

requirements specification. The reason that the interface between an embedded

system and its environment is complex, asynchronous, highly parallel, and

distributed is that it consists of interactions among a number of objects

which exist in parallel, at different places, and are not synchronized with

one another. Organizing these interactions around the objects (processes)

which take part in them is an effective way to decompose this sort of

complexity. Furthermore, assumptions and expectations on both sides of the

boundary can be documented. The result is a specification which is far more

precise and yet comprehensible than could be obtained by treating either side

of the interface as a "black box", which is what happens when the environment

is not modeled.

Another reason for having an environment model is that the environment

(when construed broadly enough) is the source of all changes to the system.

Modeling it is therefore a promising way to anticipate changes and enhance the

modifiability of both specification and target system.

The final advantage of specifying the environment is that many
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performance constraints are most naturally attache- there. The

patient-monitoring system has a real-time response requirement on database

queries, which is neatly expressed as a time limit on the component of the

terminal specification which wats for the response after sending a query.

The system must also be able to handle a certain load. Since this load is

completely determined by the numbers of sensors and terminals and the rates at

which they create work for the system, it is most directly specified by a

model of those peripherals.

The other significant aspect of constructing an environment model is that

it is a valuable tool for requirements analysis, as well as specification. In

fact, the best way to analyze requirements may be to start with the

environment model, and work "outside-in" to a proposed system which supports a

desirable mode of operation in the environment. The extreme case is

automation of an existing manual system-in the absence of changes to existing

procedures, the requirements can be derived simply by modeling the current

operation, and drawing a boundary to distinguish the automatable part! [Yeh

et al. 79 a] and [Yeh et al. 79b] both discuss "conceptual models", which are

models of system environments constructed for the purpose of requirements

analysis.

* In the patient-monitoring system, since only the "patient" and

"crt-terminal" processes interact directly with the proposed computer system,

only these are necessary for precise specification of the system interface.

The "nurse" and "doctor" processes appear strictly as vehicles for

requirements analysis. Wondering how doctors and nurses interact leads the

analyst to ask which kinds of information a doctor expects to get from a nurse

on duty, and which kinds he would like to find in the database. Wondering how

nurses interact with patients and the display leads the analyst to ask how the

H . IP I j" "
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display screen should be allocated to medical histories versus emergency

messages, how often warnings concerning an ongoing crisis need be displayed,

and whether information from the monitoring system is needed at the patient's

bedside. These questions are never asked (or answered) in the numerous

treatments of patient-monitoring systems appearing in the requirements

literature.

Even if the analysts can achieve understanding of the requirements in

some other way, early concentration on the environment may lead to better

communication with users (who are much more interested in their environment

than your system), and more open-minded problem-solving, unbiased by

preconceived notions or similar systems the analysts have worked on.

3.2. Processes

Another key feature of the operational approach is that the primary units

of specification are processes. A process is a simple, abstract

representation of autonomous (distributed) digital computation. It is

specified by supplying a "state space", or set of all possible states, and a

successor function"[2] on that state space which defines the successor state

for each state. It goes through an infinite sequence of states (although a

"halting" process can be specified by having it go into a distinguished

"halted" state which it will never leave), asynchronously with respect to all

other processes (Figure 3).

A process is cyclic, with its successor function describing its natural

cycle. The natural cycle of a process simulating a sick patient, for

instance, would be a single step of the discrete simulation algorithm. The

successor function of such a process might be declared as:
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patient-cycle: PATIENT-STATE -> PATIENT-STATE,

where the set "PATIENT-STATE", which is its domain and range and also the

state space of the process, contains values encoding possible states of the

patient between simulation steps. The natural cycle of the "doctor" process

might be to take one action, either asking one question of a nurse, giving one

order to a nurse, or taking part in one transaction with the

patient-monitoring system.

There can be no question about the generality of processes. They were

originally used as abstractions of concurrent activities within

multiprogramming systems ((Horning & Randell 73]), and many recent articles

have shown that they can be used to represent I/O devices, data modules,

tasks, monitors, buffers, or any other identifiable structure within a

computer system (e.g. [Hoare 78], [Brinch Hansen 78], [Mao & Yeh 80]).

Process-based models of computation have been the focus of extensive

theoretical work and the language Smalltalk ([Ingalls 78]). Our varied

examples are persuasive evidence that the notion of digital simulation of

nondigital objects is similarly powerful in describing the environments of

computer systems.

The appropriateness of using processes to specify requirements for

embedded systems is based on our observation that in these systems

asynchronous parallelism--among environment objects, between environment

objects and the system, and within the system (if only for reasons of

performance)-occurs naturally at the requirements level. One happy result of

recognizing that parallelism is environment specifications which should be

highly intuitive, even to naive users. This is because the specifications are

populated by identifiable models of the same autonomous, interacting objects

from which the real world is made.

-a,
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Perhaps the best way to appreciate processes is to consider the

alternatives: representations of procesbing used in other requirements

languages. The one most commonly found in requirements documents is data

access or "dataflow". Data access graphs show major system functions, and

identify the data structures which are their inputs and outputs (e.g. Figure

4). Data access is the basis of PSL/PSA ([Teichroew & Hershey 77]) and SADT

([Ross 77], [Ross & Schoman 77]), and has probably been rediscovered thousands

of times by isolated requirements-writers.

Data access may be adequate for many data-processing systems, such as the

one depicted in Figure 4. This is because major subfunctions

("check-inventory", "send-invoice") are implemented as major subprograms, and

subprograms are invoked in some implicitly understood sequence, whenever their

input files are ready. Data access is seriously inadequate for embedded

systems, however, because control is all-important in embedded systems and

must be represented in any intelligible model. If a data-access graph is

mistakenly interpreted as representing control as well, the concepts of

control expressed will be simplistic and misleading.

In Figure 4, for instance, the following problems would arise if control

were implied: (1) A distinction must be made between inputs which are always

present (such as the "INVENTORY" database) and inputs which invoke a function

whenever a new instance appears (such as "PURCHASE-ORDER"). The situation is

even more complex when there is an input value (such as the current output of

a sensor attached to a hospital patient) which is always available, but only

read at certain real-time intervals (and the interval itself is a variable

stored in some system database). (2) Functions (such as

"process-account-order" and "process-payment") may have to be executed

concurrently to meet performance requirements, in which case they must

... . ' ' rl " 1 I l "1", ' ...
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synchronize their uses of shared resources or databases (such as "ACCOUNTS").

(3) Functions may no longer execute in a predefined sequence (because of

simultaneous access from multiple terminals, the need for internal

housekeeping, etc.), and so a complex interplay of events and states must be

anticipated.

The control arrow in SADT adds an explicit representation of control to

data-access graphs (an illuminating discussion of its significance can be

found in [Ross 77]), but its informality prevents it from being precise or

expressive enough for embedded systems. Processes and their interactions, on

the other hand, are well-suited to the task of specifying complex control, as

would be expected from their historical origins in the specification of

operating systems.

Other representations of processing appearing in requirements languages

are stimulus-response paths in RSL ((Bell et al. 77], [Alford 77], (Davis &

Vick 77) and finite state machines ((Heninger 79], [Davis & Rauscher 79). A

finite state machine is very much like a single process--permitting no

explicit parallelism, decomposition of complexity, nor modeling of the

environment.

Stimulus-response paths (e.g. Figure 5) represent sequencing, control,

and parallelism explicitly, and do make it possible to decompose the

requirements. The "R-net" in Figure 5 shows parallelism between

"STORE FACTORDATA" and "EXAMINE FACTORS", and is only one of several R-nets

specifying the entire system. The fundamental differences between PAISLey and

RSL appear to be as follows: (1) The PAISLey representation emphasizes the

cyclic nature of system components, while the RSL representation emphasizes

sequences. Both are obviously useful ways of characterizing embedded systems,

and only time will tell if one is superior to the other in a majority of

" 1I
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instances. (2) The PAISLey notation integrates data, processing, and control

in a unified whole, while in RSL the various concepts are separated-R-nets

for control, PSL/PSA-like notation for data-access properties, etc. We

believe that the unified approach will ultimately prove stronger in terms of

comprehensibility, modifiability, and ability to determine internal

consistency.

3.3. Executability

In the operational approach, requirements specifications are executable.

This means that, under interpretation, the specification becomes a simulation

model generating behaviors of the specified system.

It is of vital importance to be able to interpret specifications

regardless of their level of abstraction. Not only are requirements by their

nature abstract in many respects, but they must also be developed by

successive refinements of understanding, each version of which should benefit

from this facility. We will defer until 3.4 a discussion of how this can be

* done, and only deal here with the advantages of doing so.

Executability is a powerful tool for understanding a specification in all

its ramifications. An executable specification can be tested and debugged by

* the analysts who wrote it. Its behavior can be validated by users in the

course of demonstrations. If developed in enough detail, it can even be

released on a small scale as a prototype of the proposed system.J3j

The ability to test is no panacea, as must be obvious from the literature

on program testing-and with embedded system specifications there is the

additional complication that any test must choose one of many

relative-rate-dependent process execution sequences. Nevertheless, the

problems inherent in testing programs have never caused us to give up on it,

, ,.
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and requirements testing, once established in common practice, might seem

likewise indispensable.

Furthermore, an executable requirements model can continue to be useful

after the requirements phase. The environment part of the model can be used

as a test bed during system development, which will be particularly valuable

for embedded systems because of the aforementioned difficulties of testing

them "in the field" (in fact, it is almost always necessary to write an

environment simulator for exactly this purpose). The model of the proposed

system can be used to generate sample behaviors for acceptance testing.

It is also possible to attach performance constraints in such a way that

they can be simulated along with the functional requirements, and this is done

in PAISLey. Simulation can then be used to predict performance where it is

too complex to determine analytically. This type of simulation is an

important feature of SREM, the integrated set of tools by which RSL is

supported.

There is a final, critically important, advantage of executability that

has nothing to do with testing or simulation. It is that the demands of

executability impose a coherence and discipline-because the parts of a

specification must "fit together" in a very strong sense-that could scarcely

be obtained in any other way. If an executable requirements specification is

shown to be internally consistent, that means it will continue to generate

behaviors without ever halting, deadlocking, or going into an undefined state.

In other words, it is guaranteed to be a valid specification of some system

interacting with some environment. Clearly this is the utmost that any

formally defined notion of internal consistency could do for us, since

deciding whether they are the right system and environment is a matter of

validation by the originator/user, or verification of consistency with

41
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externally defined axioms of correctness.

3.4. Specification in an applicative language

Within a process, computation (i.e. the successor function of the

process) is specified using a purely applicative language. "Applicative" (or

"functional") languages are those based on side-effect-free evaluation of

expressions formed from constants, formal parameters, functions, and

functional operators ("combining forms" for functions, such as composition).

Well-known examples of applicative languages are the lambda calculus, pure

LISP, and the functional programming systems of [Backus 78].

3.4.1. Advantages of applicative languages

Applicative languages are currently receiving a great deal of favorable

attention because of their numerous theoretical and practical advantages

([Backus 78], [Iverson 80], [Smoliar 80], [Friedman & Wise 77], [Friedman &

Wise 78a], [Friedman & Wise 78b], [Friedman & Wise 79], [Friedman & Wise 80],

among others), most of which can be exploited in requirements specifications.

To begin with, because applicative languages are interpretable, they support

the executability property: processes are executed by repeatedly replacing

their current states by successor states, and successor states are discovered

by interpreting the applicative expressions which define them.

For purposes of high-level specification, the most important property of

applicative languages is their tremendous powers of abstraction, i.e. of

decision deferment. Consider, for instance, the functional expression

"f[(g[y],h[z])]", which says that the function "g" is to be applied to the

argument "y" and "h" is to be applied to "z" (the "[ ]" symbols denote
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function application or composition). Then "f" is to be applied to the values

produced (the ( )" symbols are used to construct tuples of data). The

expression says exactly what is needed to compute the desired value, but does

not otherwise constrain the data, control, processor, or other resource

structures used to do so. Are "g[y]" and "h[z]" evaluated sequentially or in

parallel? In what data structures are their values stored? Perhaps the

arguments "y" and "z" are even shipped off to special "g"- and "h"-processors,

respectively, at different nodes of a network!

Furthermore, a primitive function has several interesting

interpretations, all of which enable additional decompositions of complexity.

A primitive function can represent a set of deferred decisions, to be made

later by defining the function in terms of simpler primitives. It can also

represent a mapping which will always remain nondeterministic from the

perspective of the requirements model, because it depends on factors outside

the scope of the model. For instance, in specifying a terminal we might

declare a primitive function

think: DISPLAY -> INPUT,

where "DISPLAY" is the set of all CRT screen images and "INPUT" is the set of

all input lines, to represent the human user's thought processes. Finally, in

PAISLey a primitive function can be an abstraction for an interprocess

interaction (see below). Because of these many options, applicative languages

have been used successfully to describe phenomena ranging in level of

abstraction from digital hardware to distributed system requirements

([Fitzwater & Zave 771, [Smoliar 79]).

An interpreter for an abstract specification language makes expedient and

non-functionally-significant decisions about such matters as control and space

allocation. The only other thing needed for interpretation is some sort of

p
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implementation of functions and sets left primitive in the abstract

specification. This can be done in many ways, perhaps the simplest of which

is to choose values of primitive functions randomly or by default. Another

way to interpret primitive functions is to display their arguments at a

terminal and ask the analyst to supply a value, thereby creating an

interactive testing system. In either case, the effect is to simulate the

decisions which have been made, without interference from the decisions that

haven't been made.

Other advantages of applicative languages are that they are well-sulted

to formal manipulations such as verification, and may have great potential for

efficient implementation (see (Backus 78]). In procedural languages, on the

other hand, assignment statements thwart top-down thinking, complicate the

formal semantics, and force memory to be referred to and accessed one word at

a time.

3.4.2. PAISLey as an applicative language

PAISLey is not a purely applicative language because states in general,

and process states in particular, are not applicative concepts. In [Zave 81]

it is explained that, while many aspects of even embedded systems can be

specified applicatively, the specification of most performance requirements,

real-time interfaces with the environment, and certain resource requirements

all necessitate the introduction of some non-applicative structure such as

processes.

In fact, the process structure makes PAISLey specifications easier to

write than typical large applicative programs. The system is decomposed into

processes, and process computations are decomposed into cycles or steps,

before applicative programming comes into use. The current state of a process

'MEI'., '
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"remembers" all its relevant history. Thus the applicative expressions which

must be written are quite simple relative to the complexity of the system as a

whole.

Since PAISLey is a blend of the applicative world and the non-applicative

world of processes and states, the "seam" must be a smooth one. The two

worlds meet at the mechanism for interprocess interaction, which is

necessitated by the existence of processes but designed to fit smoothly into

the applicative framework. Interactions take place through a set of three

primitives called "exchange functions" which carry out the side-effect of

asynchronous interaction, but look and behave locally (intraprocess) exactly

like primitive functions. Exchange functions are defined and explained in

5.3. They are a unique mechanism which seems to fulfill our purposes very

well, and also offers an interesting new perspective on asynchronous

interaction mechanisms for distributed processes.

Applicative languages have, in some circles, a reputation for

unreadability and general unsuitability for large-scale software engineering.

We believe that this reputation is due to typelessness and recursion, neither

of which is present in PAISLey.

Recursion is what purely applicative languages use to specify repetitive

computation, and is analogous to looping (iteration) in procedural languages.

Both are analogous to the repetitive application of a successor function to

produce successive process states, which is how unbounded repetition is

specified in PAISLey.

In most applicative languages, the only type of data object is the list

or sequence, and all functions are applied to one list and produce one list.

Since every function should be prepared to accept argument lists of any

internal structure, there must be a distinguished "undefined" value produced
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whenever the internal structure of the argument is unsuited to the semantics

of the function (as in [Backus 78])--and this mismatch must first be detected!

Multiple arguments to or values from functions must be packaged in single

lists, yet the existence of this substructure (or any other substructure, for

that matter) cannot be explicitly acknowledged.

Of course, deliberate substructure in data items is ubiquitous, and it is

common practice to document it with the use of data types. Furthermore,

typing in a language provides a useful form of redundancy which is susceptible

to automated checks of internal consistency.

In PAISLey non-primitive sets can be defined using set union ("A U B"),

cross-product ("A x B"), enumeration ("{ 'true', 'false' }"), and

parenthesization. The domain and range sets of every function, primitive or

not, must be declared (although a function need not have arguments). The

domain and range declarations can use arbitrary set expressions. Here are

three example declarations:

~~f: -- > A;

g: B x C -- >D U E

h: S -- > T.

When a function is applied to arguments, their types must be consistent

with the domain declaration of the function. Consistency can be defined with

the assistance of coercion, however, so that the composition "h[g[f]]" is

perfectly legal if the definitions:

A BxC;

S - INTEGERS;

D- { 0, 2, 4, 6, 8 };

E - { 1, 3, 5, 7, 9 }

have been made. This notion of typing provides all the documentation and
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redundancy desirable for engineering goals, without sacrificing any of the

flexibility attributable to typelessness. All that it requires is the ability

to compare any two set expressions for containment, which is easily done given

this particular language of set expressions.

4. QUALMS ABOUT OPERATIONAL REQUIREMENTS

Despite the obvious advantages of operational requirements, one cannot

, help but have certain reservations about the idea. In this section we examine

its apparent disadvantages.

4.1. Encroaching on design

Aren't operational specifications actually design specifications rather

than requirements specifications? This question is often prompted by the

precision, potential for detail, and executability of PAISLey specifications.

From a certain technical viewpoint, requirements should specify only the

functional and performance properties of the proposed system. Design begins

when resources are introduced. The physical resources from which the system

is to be built must be managed so that performance goals are met. The human

resources who will implement and maintain the system must be managed so that

they are used effectively; this depends on skillful modularization of the code

to be written. Adopting this as a definition of the boundary between

requirements and design, a requirements specification does not stray into

design if it avoids unnecessary management of resources and unnecessary

structuring of code.

PAISLey enables the requirements analyst to do this. This point is

illustrated copiously in [Zave 80a), using as an example the specification of
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a process-control system from [Zave & Yeh 811. We will confine ourselves here

to explaining why one aspect of a PAISLey specification, its process

structure, does not over-constrain resource management or code structure.

Processes are virtual structures, and a specification is partitioned into

processes on the basis of factors such as functionality, synchronization, and

performance--all of which belong to the requirements level. Thus a

requirements analyst should use as many processes as "make sense" to him.

Only in design should there be concern about how a large number of virtual

processes are to be realized on a smaller number of physical processors,

perhaps through time-multiplexing with priority scheduling. And the

processes, representing dynamic structure of the target system, say nothing

about its static code structure at all.

This technical view of requirements is elegant and satisfying, but it is

not the whole story. Pragmatically, a requirement is any property of the

proposed system that is necessary to satisfy the originating organization of

the acceptability of the system, and these properties may very well include

decisions about resources. Use of a particular computer or software subsystem

may be required because the originating organization already owns it, and

management insists that it be used. The new system may have to interface with

an existing computer system, and thus be compatible with its resource

management policies. The capabilities of the proposed system may even have to

be trimmed to fit the resources available. This is common with really large

systems such as ballistic-missile-defense systems and massive database

systems. Another example would be a system to monitor experimental equipment

on a satellite. Since facilities must be shared with other experiments, the

amount of memory in the on-board computer allocated to each experiment is an

administrative decision which must be made (at least tentatively) before work
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on the individual projects can begin.

The reality is that a system develops through a hierarchy of decisions,

each decision constraining those below it in the hierarchy. No system is

developed in a political or economic vacuum, and almost no system performs its

function without interfacing with any pre-existing computer system. Thus,

even though resource decisions may be premature at the requirements level, any

requirements language which is unable to record them will be terribly fragile,

performing adequately only in the most idealized of situations.

PAISLey can record resource decisions because resource structures are

like any other structures occurring in digital systems. They can definitely

be specified if there is a general model of digital computation, which PAISLey

offers. Hardware and software modules, for instance, can be specified as

processes, and then included as part of the environment of the proposed

system. This is a great strength of the operational approach--the promise of

no unpleasant surprises when new applications, constraints, or economic

contexts are encountered.

The ultimate test of whether or not a decision belongs in the

requirements is whether or not the system could be constructed in any other

way. This is illustrated in [Zave 80a], using the requirements from an early

real-time simulation system ((Air Force 65]). It is shown that decisions

about the communication network, timestamps, and the simulation time frame,

while seemingly design decisions, are actually derivable during requirements

analysis from feasibility considerations. The specification in PAISLey of

each such decision is also described.

4.2. Too much precision

There can be little question that specifications written in PAISLey are
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too precise, and based on too many technical principles, for customers, end

users, managers, and other untrained personnel to understand. At the same

time, their rigor can be invaluable to the trained analysts who will write

them (this is based on numerous experiences of being confronted by surprise

with the vagueness of my own ideas about a system). Informal analysis must

always come first, but we have not yet fully exploited the potential of formal

languages for expressing approximate or incomplete knowledge and real-world

concepts.

There is not really a conflict here, simply because nontechnical people

do not have to use the same representations that the analysts do. Analysts

can communicate with them using simplified diagrams and narrow views derived

from the current PAISLey specification. A process diagram such as Figure 2,

for instance, can have its interaction arrows labeled with the types o- data

being transferred. If this is done, the diagram does not differ substantially

in form or content from the ever-popular data-access graph!

The single most successful feature of SREM (RSL) and PSL/PSA is that

specifications are stored in a database from which a variety of up-to-date

reports can be generated automatically. We envision PAISLey's being installed

in such a database, and hope that user-oriented reports and diagrams could

likewise be produced by tools running on the current specification.

4.3. Interface with data-oriented specification techniques

Other researchers have investigated the problem of requirements for

data-processing systems, using as a starting point for their formalisms data

definition languages, i.e. languages originally developed to describe the

"conceptual schemas" (abstract, virtual, semantic structures) of databases.

The notion that a requirements model should be an explicit representation of

" !M' T 1"IT r1rll I'. :*- I..... ,; .. .: ". . . '
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the proposed system interacting with its environment has also been derived in

this context. A philosophy of data-oriented modeling is presented in (Balzer

& Goldman 79], while [Yeh et al. 79b], [Roussopoulos 791, [Mittermeir 80],

[Smith & Smith 79], and [Goldman & Wile 80] exemplify it.

It is clear that a data-oriented technique is a more natural way than

using PAISLey to develop requirements for data-processing systems. Yet

data-processing systems cannot ignore performance and concurrency, and

embedded systems cannot ignore data. Thus our goal is to view both

process-oriented PAISLey specifications and data-oriented specifications as

projections of the same underlying, all-encompassing model (Figure 6). In

this view the two types of specification are compatible and complementary, so

that analysts are free to use either or both (in parallel) as the application

domain and phase of development suggest. In is argued in (Zave 80a], by

describing the data definition facilities of PAISLey in traditional database

terms, that the structure of PAISLey is not inconsistent with this goal.

5. THE PAISLEY LANGUAGE

In this section full details of PAISLey are presented, including a new

" I mechanism for process interactions and specification of performance

requirements. An LALR grammar for PAISLey in BNF form can be found in the

Appendix.

5.1. Language philosophy

PAISLey is intended to be simple. In particular, only features which are

directly associated with run-time semantics are included.

For production purposes the language must be supported by a system which,

I1
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in addition to storing specification fragments and collecting them into

executable ronfigurations (not to mention providing tools for static analysis

and report generation), offers such conveniences as scopes, versions, macros,

parameters, libraries, meta-notations, etc. The current frenzy of research on

"programming environments" makes it plain that the design of such an

environment is not a trivial task, and should probably not be undertaken

simultaneously with development of the specification semantics.

Specifications prepared using any of the above features would be translated

, ,into PAISLey (as currently defined) before interpretation.

Stylistically, PAISLey follows APL in using distinct symbols for distinct

operators (but has far fewer of them!). This leads to a concise notation in

which essentially all words are user-chosen mnemonics. In this decision and

the one above, we apply exactly the same philosophy as [Hoare 781.

* -.. One other important principle is that every operatipnal structure must be

realizable with a bounded amount of resources (time and space). There is a

bounded number of processes, no process state can require an unbounded amount

of storage, and no process step can require an unbounded amount of evaluation

time. The purpose of this is performance, i.e. making it possible to design

systems which are guaranteed to meet their performance requirements. Clearly

if a computational path contains an unbounded loop, or may have to construct a

data structure of unbounded size, no guarantee that it meets an absolute time

constraint is possible. In PAISLey the only unbounded "structure" is the

infinite succession of process steps of each process, and this one exception

cannot be avoided.

Boundedness is enforced by requiring the sizes of system structures to be

fixed. This gives the specification a static character which will greatly

facilitate proofs of internal consistency, correctness, and other formal
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properties.

5.2. Sets, functions, prccesses, and systems

Statements in PAISLey are delimited by semicolons, and comments are

enclosed in double quotation marks.

Names are typed for greater readability. The names of functions are

always in lower-case letters, and the names of sets are always in upper-case

letters (hyphens and integers may be used In either, but they must begin with

alphabetic strings). Constants are either numbers, or strings enclosed in

single quotation marks.

There arE four kinds of statement: system declarations, function

declarations, set definitions, and function definitions. Since a system is a

fixed tuple of processes, we use the tuple-construction notation for a system

declaration. A process is declared using a function application which applies

its successor function to an expression evaluating to its initial process

state. Thus a system consisting of four processes, three being terminals and

the fourth being a shared database, would be declared as:

-(termnal-l-cycle[hlank-display),
terminal-2-cycle[blank-displayl,
terminal-3-cycle[blank-display],

database-cycle(initial-databaseI

where the following domain-range declarations would be appropriate:

terminal-l-cycle: DISPLAY -- > DISPLAY;

blank-display: -- > DISPLAY;

database-cycle: DATABASE -- > DATABASE;

initial-database: -- > DATABASE.

Terminal processes have the contents of the current displays as their process

A,
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states. Note that there is no explicit naming of processes or systems, as it

is not needed for Lhe run-time semantics.

Function declarations give properties of functions, i.e. specify their

domains and ranges or their performance (see 5.4). All function declaration

statements begin with the function name and a colon. Domain-range

declarations (of which we have seen ma--) are mandatory for all functions

except intrinsic ones. (This is because intrinsic functions are either

intrinsically typed or may have to handle several different types in the same

specification.) Domain-range declarations are optional for intrinsic

* functions, and performance declarations are optional for all functions.

When a function is nonprimitive (defined), its declarations may be

* *redundant, because its properties may be deducible from its definition.

Declarations of nonprimitive functions can and should be checked for

consistency with their definitions.

Set definitions define set names in terms of set expressions, which use

set union, cross-product (which has precedence over union), enumeration, and

parenthesization (all but parenthesization shown in 3.4.2). Note that the

size of all data structures is bounded, because all tuples (members of sets

idefined by cross-product) are of fixed size.

Function definitions define function names in terms of function

expressions, and may use formal parameters to do so. The structure of the

argument may be imitated in a formal parameter list, thus giving names to

argument substructures. Here, for instance, are some possible beginnings for

function definition statements:

new-func-l - . .

new-func-2[p] - . . •

new-func-3[(p,q)] - • •
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nev-func-4[(p,(q,(r,s)))] .

Now in a defining function expression (for all but "new-func-l") the

argument's first component can be referred to as "p", as an alternative to

selectors such as "car" and "cdr" in LISP. Formal parameters have the same

syntax as function names; the argument structure must, of course, agree with

the function's domain declaration.

Function expressions may use function names, formal parameters,

constants, applications of functions to arguments, tuple construction, and

conditional selection. Conditional selection (the "McCarthy conditional") has

the syntax "/pl:fl, p2:f2, • true':fn/" and evaluates to the value of the

first functional expression "fi" such that the predicate (Boolean-valued

functional expression) "pi" evaluates to "'true". Note that there is no

unbounded iteration, such as would be provided by "while . . . do . . ., nor

is recursion allowed. Fixed iteration can be specified using composition.

The result is that the number of primitive operations to evaluate any

function, including a successor function, can be bounded a priori.

As a simple example, consider the following specification of the

successor function of a process representing a CRT terminal:

terminal-cycle: DISPLAY -- > DISPLAY;

terminal-cycle[d] - display
[display-and-transact

[(d,think-of-request[dj)]j];

think-of-request: DISPLAY -- > REQUEST;

display-and-transact:
DISPLAY x REQUEST -- > DISPLAY x (RESPONSE U ERROR-MESSAGE);

display-and-transact[(d,r)] - (display[(d,r)],transact[rj);

transact: REQUEST -- > RESPONSE U ERROR-MESSAGE;

display: DISPLAY x (REQUEST U RESPONSE U ERROR-MESSAGE) ---> DISPLAY.

The process handles one transaction per process step, reflecting both the
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request and the response in the display. The primitive function "display" can

carry out scrolling or whatever other formatting is desired.

Even aiming for a minimum of conveniences, it is impossible to do without

some feature for defining groups of nearly identical items. In PAISLey this

is done at all levels using the same index notation, as seen in:

VECTOR - #1..10< x INTEGER >,

which defines members of the set "VECTOR" to be 10-tuples of integers. Index

notation always denotes a sequence of the expression in angle-brackets, with

the first symbol in the brackets used as the sequence delimiter. The integers

after the "#" give the lower and upper bounds of the sequencing count. The

only index notation without a delimiter symbol is the one for bounded

functional composition (application), which makes "#I .. 3 < func > farg]"

equivalent to "func(functfuncfarglJJ".

In most cases what we want is a group of statements or expressions which

differ slightly. This is done by operating on names, which are defined so

that "syllables" (alphabetic substrings delimited by hyphens) are semantically

meaningful. If the header for an index notation begins with a "syllable"

before the "#", any syllable matching it in a name in the repeated expression

A will be replaced by successive integers from the lower bound to the upper

bound.[4] Thus:

BIG-SET - J#I..3< U LITTLE-SET-J >

is equivalent to:

BIG-SET - LITTLE-SET-1 U LITTLE-SET-2 U LITTLE-SET-3,

and the system declaration:

(k#O..9999<,terminal-k-cycle[blank-display]>,
database-cycle[initial-database]

t )
~creates a system with 10,000 terminal processes (an airline reservation
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system!), where the successor function of the thirteenth one is

terminal-12-cycle".

Index notation can even extend over groups of statements. Suppose we

want our 10,000 terminals to be identical, except that some identification

must be built into "transact", the primitive function whose elaboration will

send to and receive from the central system. This can be done by making

slight modifications to the terminal specification already given, as follows:

k#0..9999

< ; terminal-k-cycle: DISPLAY -- > DISPLAY;

* terminal-k-cycle[d] - display
[display-and-k-transact

[(d,think-of-request[d])j];

display-and-k-transact:
DISPLAY x REQUEST -- > DISPLAY x (RESPONSE U ERROR-MESSAGE);

* display-and-k-transact[(d,r)] - (display[(d,r)],k-transact[r]);

k-transact: REQUEST -- > RESPONSE U ERROR-MESSAGE;

think-of-request: DISPLAY -- > REQUEST;

display: DISPLAY x (REQUEST U RESPONSE U ERROR-MESSAGE) --- > DISPLAY.

5.3. Asynchronous interactions

5.3.1. Definition of exchange functions

Asynchronous interactions between processes are specified using three

types of primitive function known collectively as "exchange functions". An

exchange function carries out two-way point-to-point mutually synchronized

communication. It has one argument, which provides a value to be output, and

always returns a value which was obtained as input. Thus within the process

an exchange function looks like any other primitive function; it has, however,

p . ,
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the side-effect of carrying out a process interaction. By making interaction

primitives masquerade as functions, we achieve compatibility with applicative

notation.

An exchange function whose evaluation has been initiated interacts by

"matching" (to be explained) with another pending exchange function. The two

exchange arguments and terminate, so that each returns as its value the

argument of the other.

Each exchange function has two attributes to be specified, namely a type

("', "xm", or "xr") and a channel (a user-chosen identifier which has the

syntax of a function name). The exchange function with type "x" and channel

"chan" is named "x-chan", the exchange function with type "xr" and channel

"real-time" is named "xr-real-time", etc. Only exchange functions with the

same channel can match with each other.

The "x" is the basic type of exchange function. It can match with any

other pending exchange function on its channel, including another of type "x".

If no other exchange is pending, it will wait until one is. If there are

several pending match possibilities, a match will be chosen

nondeterministically, with the proviso that there must be no lockout (a

situation where a pending exchange waits indefinitely while its match

opportunities are given to other, more recently evaluated, exchange

functions).

Competitive situations occur in most systems. To enable succinct

specification of them we have exchanges of type "m" , which behave exactly

like "x"'s except that two "xm"s on the same channel cannot match with each

other. They can then compete to match with an exchange of some other type, as

the examples will show.

Embedded systems typically have real-time interfaces, especially with the
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processes in their environments. To specify these we need a third type of

exchange function, the "xr", which behaves like the others except that it will

not wait to find a match. If evaluation of an "xr" is initiated and there is

no other pending exchange on its channel, the "xr" terminates immediately

without matching, returning its own argument as its value. It is always

possible to determine whether or not an "xr" matched by giving it an argument

distinct from any that it could obtain by exchanging.

Figure 7(a) shows the possible matches of exchange types within a

, channel. Figure 7(b) (contributed to the understanding of exchange functions

by Dan Friedman, (Filman & Friedman 80]) shows the derivation of the three

types. There must be both fully synchronized primitives ("synchronizing"),

and also those which do not synchronize themselves ("free-running"). There

must be exchanges which can match with their own kind and those that compete

with their own kind. This makes four possibilities, except that a

free-running type which exchanges with its own kind would be impossible,

because it would require "matching" two simultaneous, instantaneous events.

5.3.2. Examples of fully synchronized interactions

In this section we will use exchange functions to specify the

interactions between multiple transaction-processing terminals and a central

database. "transact" in the terminal specification of 5.2 can be elaborated

as follows:

transact(r] -
receive-response(send-request[r];

send-request: REQUEST -- > FILLER;

send-request[r] - xm-requ[r];

receive-response: FILLER -- > RESPONSE U ERROR-MESSAGE;

4F
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receive-response[null] - x-resp['null',

where "FILLER" is an intrinsic set whose only element is the constant

"null'". The database process successor function is specified as:

database-cycle(d]
finalize-transaction[perform-transaction((d,receive-request)]];

receive-request: -- > REQUEST;

receive-request - x-requ['null'];

perform-transaction: DATABASE x REQUEST -- > DATABASE x RESPONSE;

finalize-transaction: DATABASE x RESPONSE -- > DATABASE;

finalize-transaction[(d,r)] - proj-2-I[(d,send-response[r])];

send-response: RESPONSE -- > FILLER;

send-response(r] - x-resp(r].

By renaming (redefining) the exchange functions, we are able to give them

mnemonic names, and also to attach explicit types at the most meaningful

place.

"send-request" in a terminal and "receive-request" in the database match

with each other to transmit the request. Note that the type "xm"'s in the

terminals iompete for the type "x" in the database; if nothing but "x"'s were

used, two evaluations of "send-request" in different terminals might match

with each other! Since the "xm" and "x" are symmetric with respect to

synchronization, either may have to wait for the other.

After the request is processed against the database,

"finalize-transaction" disposes of the results. It is defined in terms of the

intrinsic function "proj-2-1", which projects an ordered pair onto its first

component, in this case the updated database. The second component is

evaluated only for its side-effect of sending the response back; the "'null"'

value it returns is thrown away.

"receive-response" could have been defined using type "xm", but an "x" is

pQ QI i
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also correct, because precedence constraints enforced by the functional

nesting of "send-request" inside "receive-response" ensure that at most one

instance of "receive-response" will be in evaluation at any one time, namely

that of the process whose request is now being processed. Thus matching on

the channel "resp" is always unique.

"FILLER" and "'null" are used as place-holders whenever syntactic rules

dictate that there must be a set or value, but no semantics need be carried.

"send-request", for instance, returns the value "'null" because every

function must have a value. And "receive-response" has "FILLER" as its domain

simply because it is composed with "send-request", although the reason for the

composition is sequencing rather than transfer of values. "receive-request"

does not need a domain (because a function does not require one), but "x-requ"

must have an argument-and so "-null" is used.

.- ,

5.3.3. Examples of free-running interactions

A "free-running" process is one whose only interactions occur via "xr",

so that it will never wait to synchronize with another process. The

prototypical free-running process is a real-time clock, which "ticks" once per

process step, and could not fulfill its intended function if it had any

synchronizing interactions. Such a process is specified:

(clock-cyclefO, . . . );

clock-cycle: TIME -- > TIME;

TIME - INTEGER;

clock-cycle[t] - proj-2-1[(increment[t],offer-time[t])];

increment: TIME -- > TIME;

offer-time: TIME -- > FILLER U TIME;

offer-time(t] xr-time(t].
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Any process wishing to read the current time must evaluate:

current-time: -- > TIME;

current-time = xm-time['null'].

Concurrent "xm-time"'s will compete to match with "xr-time", implying for this

particular specification that no two readers will ever get the same clock

value.

Another common type of free-running process is a digital simulation of a

nondigital, unintelligent environment object. Here is the top-level

specification of the processes representing the machines in the environment of

a process-control system ([Zave & Yeh 81]):

j#l..3

< ; machine-j-cycle: MACHINE-STATE ---> MACHINE-STATE;

machine-j-cycle[m]
proj-2-1[(simulate-machine[(m,feedback-j-if-any)],

offer-machine-j-data[sense[m]]

feedback-J-if-any: -- > FEEDBACK U FILLER;

feedback-j-if-any - xr-j-back['null'];

offer-machine-j-data: SENSOR-DATA -- > FILLER U SENSOR-DATA;

offer-machine-j-data[s] - xr-j-sens[s]
" i >;

simulate-machine:
MACHINE-STATE x (FEEDBACK U FILLER) ---> MACHINE-STATE;

sense: MACHINE-STATE -- > SENSOR-DATA.

During each process step two things are done in parallel: (1)

"simulate-machine" computes the next process state, which is an element of

"MACHINE-STATE" encoding the machine's current status, and (2) the current

output of sensors attached to the machine ("sense[m]") is offered to the

control system via "xr-j-sens". If the control system is ready to accept the

rA 0 11 - - -
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data from this machine cycle an exchange will take place; otherwise the data

will be gone forever.

"simulate-machine" has two arguments: the current machine state, and the

value returned by "feedback-J-if-any". This function is defined as

"xr-j-back", an exchange function which interacts with several sites in the

control system which provide controlling feedback to the jth machine. If some

actuator is being activated at the moment "xr-j-back" is evaluated, an

exchange takes place and a value in "FEEDBACK" is returned. Otherwise the

argument "'null" is returned, indicating that no actuators are being used.

Our final example of a free-running process is a producer-consumer

buffer. Its process state is the current buffer contents, and its successor

function is:

next-buffer: BUFFER ---> BUFFER;

next-buffer[b] - give-to-consumer[get-from-producer[b]];

get-from-producer: BUFFER -- > BUFFER;

get-from-producer[b] = /full[b]: b,
true' : put-on-tail[(b,xr-prod['null'])]

• /;

give-to-consumer: BUFFER -- > BUFFER;

give-to-consumer[b] =
/empty[b]: b,

true' : put-on-head[(xr-cons[first[b]],rest[b])]

On each process step "get-from-producer" provides the opportunity to put

one new element in the buffer (assuming it is not already full). If some

producer has a pending "xm-prod[new-element]", "new-element" will be returned

as the value of "xr-prod" and inserted. Otherwise "xr-prod" returns "'null",

which "put-on-tail" will simply ignore.

Likewise, on each process step "give-to-consumer" offers the element at

the head of the buffer ("first(b]") to any process evaluating

- - ,
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"xm-cons['null'". If such an evaluation is pending an exchange will take

place and "xr-cons(first[b]]" will return "'null", whish "put-on-head" will

ignore. Otherwise the unconsumed "first[b]" will be returned, and

"put-on-head" will reinstate it.

The expected behavior of this process (at least under light loading) will

be to cycle very fast, checking for interactions but not having any on most

process steps. This shows that exchange functions are in some sense more

primitive than synchronization mechanisms which enable a process to wait for

any one of several events to occur. The payoff is a much simpler

implementation for exchange functions, and the choice is in keeping with the

PAISLey philosophy of simplicity and minimal semantics. It is also arguable

that the above specification is as perspicuous as any, largely because of the

benefits of applicative style.

5.3.4. Implementation

Exchange functions can be implemented straightforwardly, even on

* distributed networks (assuming a simple message-passing facility). In almost

all cases the pattern of matches on a channel is one-to-one or many-to-one,

the latter for resource competition. In this section we present an efficient

distributed algorithm for implementing exchange matching in these cases.

Consider first an exchange channel with many "xm"'s and one "x" (or just

two "x"'s, in which case one of them takes the role of the "xm" in this

description), all residing at different nodes of a network (see Figure 8).

When an "xm" is initiated, a message carrying its argument is sent to the node

where the matching "x" resides. These messages are queued up in arrival

order. When the "x" is initiated, if the queue is empty, it waits until it is

not. When the queue is not empty, it removes the first entry as the "match",
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takes the value stored there as its own value, sends a termination message

containing its argument to the matching "xm", and continues. Computation can

continue at the "xm" as soon as the termination message (with its value) is

received.

This implementation uses only two messages per match, and automatically

prevents lockout with FIFO queueing. For channels with one "xr" and either

one "x" or many "xm"'s, the queue is formed at the site of the "xr", and the

only modification necessary is that if the "xr" is initiated when the queue of

possible matches is empty, then it does not go into the wait state. For

channels with many "xr"'s and one "x", matching is done at the site of the

"x", but no queue forms. If an "xr" sends an initiating message but the "x"

is not pending, a termination message with the original argument is sent back

to the "xr" immediately.

In the rare cases where one party to all matches on a channel is not

predetermined by the static specification structure, matching on a channel can

be implemented by a "channel controller" situated anywhere in the network.

The initiation of any exchange causes a message containing its type and

argument to be sent to the controller. The controller queues and matches as

appropriate, notifying an exchange function that it has been matched by

sending it a termination message containing the value. This is less desirable

* than the previous strategy only because it requires four messages per match.

5.3.5. Further properties and justifications

Because exchange functions are only "pseudo-functions" and have

side-effects, expressions containing them cannot be optimized to avoid

evaluation of expressions whose values are not needed. The most common

example of this is a successor function with the form "proj-2-1[(a,b)]", where
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expression "a" computes the next state and "b" interacts with other processes.

There is also a potential problem with distributing values obtained by

interaction, but the formal parameter mechanism does this nicely. Suppose the

effect of

/equal[(x-denom['null'],O)J: 'divide-check',
'true': divide[(numerator,x-denom['null'])]
/

is wanted, where both usages of the value returned by an exchange are supposed

to result from a single evaluation. This can be specified unambiguously by

defining "quotient" as:

quotient[(n,d)] - /equal[(d,O)]: 'divide-check',
true : divide[(n,d)]

I,

and then using it in the invocation "quotient[(numerator,x-denom['null'])]".

Establishing the internal consistency of a specification with exchange

functions requires some attention. The range of a user-chosen function

defined as an exchange must agree with the domains of all those with which it

can exchange. Furthermore, precedence constraints caused by nested evaluation

structures can cause exchange deadlocks. But the channel of an exchange

function has been made a constant attribute rather than an argument to it just

so that exchange patterns would yield to static analysis, and simple arguments

do establish deadlock-freedom in many common cases. For instance, the process

* hierarchy constructed in (Zave & Yeh 81] expresses the acyclic "dependency"

structure of the interactions in the system; the argument that this prevents

deadlock is a common one in the operating system literature (e.g. [Brinch

Hansen 771).

There are so many proposals for distributed interaction mechanisms

current today that comparison and justification are essential. Most properly,

exchange functions are motivated and justified by our goal of fitting

,............. 0
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processes and asynchronous interactions into an applicative framework, and in

this role they are almost unique (see also [Milne & Milner 79]). Their

generality is established by Figure 7(b) and by extensive experience with

them, which indicates that the only kind of interaction they cannot specify is

unbounded broadcast.

Exchange functions can also be justified, however, on the same basis as

procedure-based mechanisms, which fall into the two general categories of

procedure-call mechanisms ([Brinch Hansen 78], (Hoare 74], (Ichbiah et al.

79]) and message-passing ([Rao 80]). Exchange functions are more primitive

than procedure calls because they only specify interaction at one point in

time rather than two (procedure call and return). They are thus more general

and easier to implement, while the mutual synchronization of the communicating

processes provides much of the structure and control usually associated with

procedure-call mechanisms.

It is the mutual synchronization that most distinguishes exchange

functions from message-passing mechanisms, where (usually) messages are

automatically buffered, so that the sender transmits the message and

continues, while the message is queued until the receiver is ready for it.

The decision against this scheme is based on our concern with performance.

Consider a set of terminals sending updates to a central database. With

exchange functions a terminal cannot create new work for the system until the

system has accepted its previous work. If a terminal could simply send an

update message and continue, its speed could increase (unchecked by the

ability of the system to handle the work), the queue at the database could

grow to unbounded lengths, and no bounds on the performance of the system

could ever be established.

At the same time, there is nothing wrong with bounded buffering, but this

I'
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can always be specified in PAISLey. Introducing bounds within an abstract,

general-purpose interaction mechanism (such as "message passing up to some

bound") would seem a most unfortunate mixture of specification and

implementation.

Given that synchronization is going to be two-way, it costs very little

in the implementation to preserve the possibility of two-way data transfer,

although it is seldom used. It also keeps the number of primitives down by a

factor of two, since otherwise each of the three exchange function types would

have to come in a "sending data" and a "receiving data" version.

Of all the well-known interaction mechanisms, the most similar to

exchange functions is Hoare's input/output primitives. In Hoare's language a

pair of statements, "P?input" in process Q and "Q!output" in process P, will

come together in the same mutually synchronized manner that two matching

exchanges do. "output" is an expression whose value is assigned to the

variable "input", assuming appropriate type correspondences. In addition to

the relatively unimportant data asymmetry, Hoare's primitives seem to be

different from exchange functions in three fundamental ways: (1) There is no

way to specify real-time or free-running interactions. (2) There is no

straightforward way to specify resource sharing, since all "matches" are

one-to-one by process name. In Hoare's language a process representing a

shared resource must have a separate command for each process with which it

can communicate, and guard that command ([Dijkstra 751) with an input command

naming the appropriate process of the many. The guard (and statement) to be

executed are chosen nondeterministically from the processes that are ready to

communicate. These multiple statements seem distinctly clumsy compared to an

"xm"/"x" exchange match. Furthermore, the full knowledge each process must

have about the names of the processes with which it communicates makes
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modularity difficult to achieve. (3) Hoare's primitives belong in a

procedural, rather than applicative, framework. The destination of a data

transfer, for instance, Is specified by an address.

5.4. Performance requirements

5.4.1. Definition of performance requirements

So far the only structure that has been needed for complete and formal

specification of performance requirements is attachment of timing and

reliability attributes to functions in the "functional" requirements

specification. A timing attribute refers to the evaluation time of the

function. It is a random variable, and any information about its

distribution, such as lower or upper bounds, mean, or the distribution itself,

may be given.[5]

A reliability attribute can only be attached to a function whose range is

divided into two subsets (e.g. "---> SUCCESS-RESULT U FAILURE-RESULT"), the

first for the values returned by successful evaluations and the second for

values returned when the evaluation fails. The attribute itself is a discrete

(binary) random variable whose two outcomes denote successful or failed

evaluations, and any information about its distribution may be given.

When a primitive function fails it simply returns a value in its failure

range. An exchange function fails in the same way, except that even when it

fails it must still match another exchange-so that failures do not affect or

complicate analysis of exchange patterns. Furthermore, if matching exchange

functions both have reliability properties, they must succeed or fail

together.

Failure of a nonprimitive function simply means that the function

.. ..(l l ' '
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delivers a value in the second subset of its range. It is up to the

function's definition to ensure that this happens with the specified

frequency, since the function is evaluated according to its definition under

all circumstances.

Reliability is a difficult and little-understood subject, but this

definition of it has several appealing properties. It forces the specified

system to have the primary characteristic of a reliable system, namely going

into a well-defined and previously anticipated state when something fails. It

makes reliability independent of timing and functionality, since a function

evaluation must satisfy its timing requirements and deliver a value in its

declared range regardless of whether it succeeds or fails. In fact, we have

deemed this property so important that we have sacrificed some realism for it:

only primitive functions can really fail (since nonprimitive ones are always

evaluated according to their definitions). Much more knowledge of reliability

is needed before we can be sure how successful this approach will be, but its

formality and tractability are strong arguments in its favor.

These performance requirements can be simulated by the specification

interpreter, and checked (in principle!) for internal consistency, just as the

functional ones are. This means, for instance, that if "fix]" is defined as

"g[h[x]]", and there are upper bounds on the evaluation times of all three,

then the upper bound on "f" must be strictly greater than (allowing time for

invocation/argument transfer) the sum of the upper bounds on "g" and "h".

5.4.2. Examples of "synchronous closed-loop" performance requirements

An on-line database system can be called a "synchronous closed-loop"

system-"closed-loop" because the entire feedback loop realized by the system

is explicitly represented, and "synchronous" because the terminal process (on
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behalf of the cooperative person behind it) waits for responses, i.e.

synchronizes itself with the system. For these systems the basic performance

*" requirements are particularly easy to specify, and all are attached to the

terminals. We will refer to the functional terminal specification in 5.2, and

give performance requirements typical of airline reservation systems ((Knight

1 72]).

Distributions have been left as comments in the PAISLey syntax because we

have not yet settled on a formal language for them. Timing requirements

* normally call for the maximum, minimum, mean, or constant value of the random

* ,variable, while reliability requirements normally specify a lower bound on the

" probability of success.

A response-time limit of 3 seconds is specified by:

transact: ! ---> "maximum - 3 sec".

An average load of 200 transactions per second, assuming 10,000 terminals in

the system, is specified by:

terminal-cycle: I ---> "mean - 50 sec",

which says that on the average a terminal demands a transaction (goes through

a cycle) every 50 seconds. Finally, the requirement that at least 99 per cent

of all transactions must be processed successfully is expressed as:

transact: % ---> "prob{ 'success' I >- .99",

which, of course, can only be attached to "transact" because its range is

divided into success ("RESPONSE") and failure ("ERROR-MESSAGE") subranges.

5.4.3. Examples of "asynchronous closed-loop" performance requirements

Process-control systems can be called "asynchronous closed-loop"

systems-"asynchronous" because the machines, which are the sources and

destinations of the feedback loops realized by these systems, are

-#Z
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free-running. The systems must keep up with them without their cooperation.

Performance requirements for these systems are more of a challenge, but the

operational approach enables us to specify them straightforwardly.

"Open-loop" specifications, in which not all of the feedback loop (ultimately,

the purpose of any embedded system is to realize feedback loops) is included

explicitly in the model, have performance requirements similar to these. An

example of an open-loop specification would be a patient-monitoring system in

which treatment of patients was not represented, only display of warning

messages.

* In [Zave & Yeh 81] a variety of timing requirements for a process-control

system are given. These include: (1) the granularity of the discrete

* simulation of the machines in the environment, (2) a real-time limit on the

fully automatic feedback loop realized by the system, (3) a real-time limit on

the partially manual feedback loop realized by the system, specified as

separate response requirements on the human operator and on the computer

system, and (4) a derived performance requirement on the system's internal

* database component which will guarantee that other system components can meet

their own performance requirements. Despite the subtleties involved, each one

of these requirements is specified simply by attaching a timing constraint to

the successor function of a single process!

5.4.4. "Real-world" properties

Time and reliability (the fact that sometimes digital components do not

do what their definition says they will, for physical reasons forever beyond

the reach of digital logic) are nondigital properties that incontrovertibly

affect the digital domain. In [Zave 80b] many other such physical

("real-world") properties are mentioned, weight and distance, for example.

p ,
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Why aren't these formalized as performance requirements as well?

The answer is that, to the extent that we know them, the effects of these

properties on the computational (digital) domain can be specified in terms of

functions, timing, and reliability. Weight constraints, for instance, only

affect how many functions can be realized. Even if we did attach weight

attributes to components of a PAISLey specification, there is nothing that an

interpreter could do with them. Therefore an informal comment is just as

satisfactory.

Distance is a more interesting example because its effects on the

computational domain are more varied. Distance increases the relative time

for interprocess interactions, decreases component reliability, and increases

the logical complexity of interfaces which must cope with these factors. Yet

these three effects are directly expressable in terms of timing, reliability,

and functional requirements, respectively.

Factors such as these can nevertheless have a profound effect onA
requirements. In an airline reservation system, for instance, it may be

necessary to divide the response-time or transaction-reliability allowances

into portions for the data-communication subsystem and portions for the

database subsystem. Although such allocation is technically a design

decision, two reasons for doing it during the requirements phase are: (1) to

enable feasibility analyses of two very different technologies, and (2) to

contract the work to different organizations.

These allocated requirements can be specified in PAISLey. We have

constructed a requirements model in which time limits are given for, and

failures can occur in, each of three stages: input transmission, transaction

processing, and output transmission. Failure at any stage aborts subsequent

stages and propagates an appropriate error message. This is the source of
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elements in the set "ERROR-MESSAGE" found in the range of "transact" in the

terminal specification.

6. EVALUATION AGAINST GOALS FOR REQUIREMENTS SPECIFICATIONS

A thorough evaluation of PAISLey cannot be made until an interpreter has

been implemented and specifications of large systems have been written. In

the meantime, we present the reasons why we believe our goals for requirements

specifications will be met.

It was stated in 1.2 that, in order to constrain the target system, a

requirements specification should be precise, unambiguous, internally

consistent, complete, and minimal. The formal nature of a PAISLey

specification leaves no doubt as to its precision and lack of ambiguity. If

it (1) is syntactically correct, (2) has all its domain declarations in

agreement with all its function applications, (3) has all its range

declarations in agreement with its function definitions, and (4) can be shown

I to be free of exchange deadlock, then it is internally consistent. The

arguments in 4.1 suggest that PAISLey does not obstruct the writing of minimal

specifications.

The issue of completeness deserves special attention, because the worst

failing a requirements specification language can have is to be unable to

express what the requirements analyst wants to say. This is the problem that

makes analysts revert to English! PAISLey has been used to specify

requirements for a wide variety of embedded systems (small examples), and

never yet found wanting. In addition to the examples used or referred to

here, it was also used to specify (in some 33 pages, see [Zave 78]) a

distributed design for an innovative interactive numerical system that was

• p ,
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actually implemented directly from the specification ([Zave & Rheinboldt 793,

[Zave & Cole 81]). Furthermore, the prompt feedback provided by executable

requirements should help to protect against omissions.

Of course, this refers only to properties relevant to the computational

domain-it says nothing about constraints on the development process itself,

such as deadlines, cost limits, methodological standards, and routine

maintenance procedures. PAISLey does not address these, nor does it offer any

particular help in posing alternate or prioritized requirements ((Yeh et al.

80]). And the need to supplement formal requirements with diagrams, comments,

and other informal avenues of human communication will never disappear.

A requirements specification must be formally manipulable or testable, so

that it can be determined whether the final product meets its requirements.

Any property of a PAISLey specification relating to the behavior of the system

in a given situation is clearly testable, because the behavior of the

executable specification can be compared directly to the behavior of the

target system. PAISLey specifications should also be suitable for

verification, because they are based on a few simple and formal concepts, but

this aspect has not yet been explored.

Finally, requirements specifications should be understandable and

modifiable. Although these qualities are vague and subjective, there is

reason to believe that they can both be achieved by attaining two other

qualities which are at least identifiable, if still subjective. These two

qualities are: (1) providing modeling capabilities which are abstract,

intuitive, and close to human perceptions of the environment to be modeled,

and (2) providing means by which complexity can be decomposed. The latter is

necessary because a complex specification must be understood (and changed) one

small piece at a time. The former is important for understanding because it
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allows people to think in familiar, problem-oriented terms. It may also be

important for modifiability, as explained in (Goldman & Wile 80]. They argue

that, since our current best definition of modifiability is that a small

change in the environment causes a correspondingly small change in the

specification, the property is most possessed by those specifications which

are the most direct translations of the natural environment into formalism.

* We contend that PAISLey models can be intuitive and close to the natural

way people think about embedded systems. The objects in the system's

environment can be modeled directly as autonomous parallel processes, using a

language with the power to specify simulations of great verisimilitude. The

internal process structure of the proposed system model is largely determined

by the environment structure and user-oriented system "functions" or

capabilities (see 7.2).

PAISLey also enables nontrivial decomposition of complexity. The

division of a specification into processes is especially useful, for instance,

because it decomposes both static and dynamic properties, and because it seems

to correlate with divisions meaningful to users. The partitioning even

extends to execution of specifications, because any subset of processes can be

executed in isolation, simply by leaving all interactions with missing

processes as unelaborated primitives in a form such as "receive-message: -- >

MESSAGE". The interpreter will evaluate this "interaction site" by choosing

some message at random. This capability was used in [Zave & Yeh 81] to

develop a specification in five versions, each independently executable, and

each obtained from the last by adding new processes/functions in an

"outside-in" sequence. Decomposition of complexity is discussed further in

[Zave 80a].

ON ,.
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7. PLANS FOR FUTURE RESEARCH

7.1. Execution of Specifications

We are currently planning the implementation of a system for executing

specifications. Specifications will be checked for consistency and compiled

into fully parallel runtime process-and-interaction structures. These

structures will then be interpreted under interactive control. The most

important questions to be answered are: What is it like to test a

specification? What kind of control over the course of execution does the

analyst need? What display, report, and trace facilities can be used to

produce an intelligible outcome?

7.2. Methodology

This work on requirements specification, which has been pursued so far

with small examples, must be extended in the directions of requirements

analysis, and "scaling-up" to large systems. In other words, we need to

pursue the implications of process-based specifications for a requirements

methodology.

The most obvious problem is that process-based descriptions are not

intrinsically hierarchical. It is not clear, however, that top-level system

requirements are hierarchical either. Preliminary studies indicate that a

complex system carries out several parallel functions for its environment,

none of which is subservient to any other. ("Top-level" is important here

because once the process structure of a PAISLey specification is determined,

further decisions are recorded by elaboration of successor functions--which is

completely hierarchical.)

I..
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This observation has suggested an alternate methodological approach, in

which parallel functions are identified and translated into PAISLey processes

or hierarchically arranged groups of them (similar to "subsystems" in DDN, see

[Riddle et al. 78]). Preliminary work with three process-control examples has

even revealed a set of rules which can be used to identify user-oriented

functions of these systems; functions defined according to these rules have a

one-to-one correspondence with processes in the subsequent PAISLey

specification.

Complexity is then decomposed through incremental development: the

specification is written and tested one function/process at a time. The

language semantics already support this mode of use, as explained in Section

6, and our investigations of the interpreter's human interface are also being

carried out with the incremental mode in mind.

These ideas are still highly speculative, but they do establish that

hierarchical abstraction is not the only approach to a practical requirements

methodology. At the highest levels of system description, "flat" structure

may not be incompatible with good structure.

7.3. Design

It has been pointed out that PAISLey is capable of specifying the results

of design decisions. A logical extension of this is to investigate its

properties as a design specification language. The benefits are potentially

great, because a uniform language for requirements and design should make

possible substantial improvements in the traceability and automatability of

design. It might also lead to a better theoretical understanding of design

decisions as resource/performance trade-offs.
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APPENDIX: A GRAMMAR FOR PAISLEY

This gramar is LALR, and is written in BNF with nonterminals underlined.

Comments are transparent, and can therefore appear anywhere. Blanks are also
transparent, except inside an ascii-string.

comment ::- "ascii-string"

* spec ::- spec ; statement

-~~ statement

spec ; index-head < ; spec >I

index-head < ; spec >

index-head ::- lower-string #t integer .. integerI

upper-string # integer .. integerI

#t integer ., integer

statement ::= system-decl I

func-decl

set-defn

func-defn

systen-decl ::n(process-list )

process-list :-process-list ,processI

process
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process-list ,indexr-head < ,process-list >

index-head < process-list >

process :-func-name [ func-exp

func-decl ::in func-name :func-property

func-property ::- domain-range

timing-attribute

reliability-attribute

domain-range :-set-exp --- > set-exp

-> set-exD

timing-attribute z:- !->comment

reliability-attribute ::% --- > comment

set-defn :-set-name - set-exp

set-exp :-set-eixp U set-term

set-term

set-exp U index-head < U set-exp >

index--head < U se-x >

set-term ::nset-term x set-itemI

set-item

set-term x index-head < x set-term >

index-head < x set-term >

set-item ::nset-nameI

(set-exp)I

Iconat-list

set-name :-upper-string -set-name-string

upper-string

.41
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set-name-string :-set-name-string -set-sy11

set-syll

set-syll :*- upper-string

integer

conat-list :-const-list ,const-name

cons t-name

const-name ::-ascii-string'

integer

real-number

func-defn ::- func-name -func-expI

func-name formal-params -func-exp

formal-params :- param-list

param-list ::- param-list , func-nameI

func-name

param--list , (param-list)

(param-list)

func-exp :-func-name

const-name

fune-appi

Cfunc-list)I

/pred-pair-list ' true' func-exp

func-appl :: func-name [func-exp I I

index-head < func-name > func-exp

func-list :-func-list ,func-expI

func-exp I

func-list ,index-head < func-list, >
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index-head < , func-list >

pred-pair-list ::- pred-pair-list , pred-pair I

pred-pair I

pred-pair-list , index-head < ) pred-pair-list >

index-head < , pred-pair-list >

pred-pair ::= func-exp : func-exp

func-name :: lower-string I

lower-string - func-name-strLnA

func-name-string ::- func-syll - func-name-string I

func-syll

func-syll ::- lower-string I

integer

Primitives of the grammar.

ascii-string ::- any string of ASCII characters

upper-string ::= any string of upper-case alphabetical characters (note that
"U" is also an operator, and should not be generated as a set-name )

lower-string ::- any string of lower-case alphabetical characters (note that
x is also an operator, and should not be generated as a func-name)

integer ::- any string of numerals

real-number ::- any string of numerals with a single embedded period

Intrinsic sets.

FILLER { null }

BOOLEAN - { true', 'false }

INTEGER - the set of all integers representable on the host machine

REAL - the set of all real numbers representable on the host machine

STRING - the set of all string constants with length less than or equal to
some bound

I I I II "II ' - ' =- '
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Typelesd intrinsic functions.

x-lower-string I xm-lower-string I xr-lower-string

proj-integer-lntener

equal

Typed intrinsic functions.

sum: INTEGER x INTEGER -> INTEGER

difference: INTEGER x INTEGER -> INTEGER

product: INTEGER x INTEGER -> INTEGER

uotient: INTEGER x INTEGER -> INTEGER

remainder: INTEGER x INTEGER -> INTEGER

greater-than: INTEGER x INTEGER -> BOOLEAN

less-than: INTEGER x INTEGER -> BOOLEAN

greater-than-or-equal: INTEGER x INTEGER -> BOOLEAN

less-than-or-equal: INTEGER x INTEGER -> BOOLEAN

I

in------------------ -,"----------,, "'
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FOOTNOTES

[Affiliation of Author] This research was supported in part by the Air
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University of Maryland.

The author is with Bell Laboratories, Murray Hill, New Jersey 07974.

[1] Thus "embedded" is almost synonymous with "real-time", but we prefer

the newer term because it does not exclude performance requirements dealing

with reliability.

[2] Throughout this paper mappings will be called "functions", despite

the fact that mappings named in specifications are often relations. The

reason is that "function" gives a more accurate impression: the intention is

always to produce a unique value when the mapping is invoked in the eventual

target system, even though that value cannot always be determined by a known

functional expression.

1[3] In most cases a practical requirements specification, even if

executable, will be far more abstract (less detailed) than the system it

specifies. Other differences between executable specifications and

implementations lie in their performance, resource, and accessibility

properties. A prototype falls somewhere between an executable specification

an an implementation, because it must get some exposure in the field, and this

requires performance, resource, and accessibility properties which are

adequate at some minimal level.

[4 The matching of index syllables does not discriminate between upper

p -. t
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and lower case letters, so that an index syllable has scope over set and

function names alike.

[5] More generally, the sequence of evaluations of the function over the

lifetime of the system could be associated with a stochastic process, so that

the time of each evaluation would be a separate random variable, but let us

hope such generality will never be needed.

. A
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CAPTIONS FOR FIGURES

Figure 1. A requirements-level system classification.

Figure 2. Partial model of a patient-monitoring system.

Figure 3. Processes in action.

Figure 4. A data-access graph for filling orders from an inventory.

Figure 5. A stimulus-response path (part of a patient-monitoring system)

specified in RSL (from [Alford 771).

Figure 6. The conceptual model underlying both process-oriented and

*data-oriented system specifications.

Figure 7. The three types of exchange function.

Figure 8. Distributed implementation of exchange matching.
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